

18Vdc-85Vdc input 18.5Vdc to 60Vdc output: 400W Max. Output

Applications

- Transportation applications
- Industrial applications
- Telecommunications equipment

Features

- Compliant to RoHS EU Directive 2002/95/EC (-Z versions)
- Compliant to RoHS EU Directive 2002/95/EC with lead solder exemption (non-Z versions)
- Compliant to IPC-9592 (September 2008), Category 2, Class II
- Wide variable input voltage range (18-85Vdc)
- Programmable output voltage range (18.5-60Vdc)
- Remote sense
- Positive logic remote On/Off
- Output over current protection (non-latching)
- Over temperature protection
- Monotonic startup under pre-bias conditions
- Industry standard half-brick size57.7 x 60.7 x 12.95 mm (2.27 in. x 2.39 in. x 0.51 in.)
- Wide operating temperature range (-40°C to 85°C)
- Digital (PMBus) Interface
- UL* 60950-1 2nd Ed. Recognized, CSA[†] C22.2 No. 60950-1-07 Certified, and VDE[‡] (EN60950-1 2nd Ed.) Licensed
- ISO** 9001 and ISO 14001 certified manufacturing facilities

Description

The JRCS016 is a versatile non-isolated module capable of delivering output voltages that can be below, equal to or above the input voltage (buck and boost functionality). Over an input voltage range of 18 to 85V, these modules can provide an output voltage that can be set between 18.5V and 60V and output power up to 400W. A variable output current limit that automatically limits the output current depending on the desired output voltage safely limits the output power that can be delivered by the module. Threaded-through holes are provided to allow easy mounting or addition of a heatsink for high-temperature applications. Other features include remote On/Off, adjustable output voltage, over current, and over temperature protection. The modules also have a digital (PMBusTM) interface with a rich set of supported commands

 $^{^{}ullet}$ UL is a registered trademark of Underwriters Laboratories, Inc.

 $^{^\}dagger$ CSA is a registered trademark of Canadian Standards Association.

 [†] VDE is a trademark of Verband Deutscher Elektrotechniker e.V.
 ** ISO is a registered trademark of the International Organization of Standards

18Vdc-85Vdc input 18.5Vdc to 60Vdc output: 400W Max. Output

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only, functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect the device reliability.

Parameter	Device	Symbol	Min	Max	Unit
Input Voltage					
Continuous	All	V _{IN}	-0.3	85	Vdc
Transient, for up to 100ms	All		-0.3	100	Vdc
Operating Ambient Temperature	All	T _A	-40	85	°C
(see Thermal Considerations section)					
Storage Temperature	All	T_{stg}	-55	125	°C

Electrical Specifications

Unless otherwise indicated, specifications apply overall operating input voltage, resistive load, and temperature conditions.

Parameter	Device	Symbol	Min	Тур	Max	Unit
Operating Input Voltage	All	V _{IN}	18	_	85	Vdc
Maximum Input Current	All	I _{IN,max}			26.0	Adc
($V_{IN}=V_{IN, min}$ to $V_{IN, max}$, $I_{O}=I_{O, max}$)						
Input No Load Current	V _{O,set} = 18.5Vdc	I _{IN,No load}		70		mA
$(V_{IN} = V_{IN, nom}, Io = 0, module enabled)$	V _{O,set} = 60 Vdc	I _{IN,No load}		70		mA
Input Stand-by Current	All	I _{IN,stand-by}		27		mA
(V _{IN} = V _{IN, nom} , module disabled)						
Inrush Transient	All	I²t			0.5	A ² s
Input Reflected Ripple Current, peak-to-peak (5Hz to 20MHz, 1μ H source impedance; $V_{IN,min}$ to $V_{IN,max}$, I_0 = I_{Omax} ; See Test configuration section)	All				700	mAp-p
Input Ripple Rejection (120Hz)	All		10			dB

18Vdc-85Vdc input 18.5Vdc to 60Vdc output: 400W Max. Output

Electrical Specifications (continued)

Parameter	Device	Symbol	Min	Тур	Max	Unit
Output Voltage Set-point	All	V _{O, set}	-1.5	_	+1.5	% V _{O, set}
$(V_{IN}=V_{IN, min}, I_0=I_{O, max}, T_A=25^{\circ}C)$						
Output Voltage	All	V _O , set	-3	_	+3	% V _{O, set}
(Overall operating input voltage, resistive load, and temperature conditions until end of life)						
Output Voltage Adjustment Range		Vo	18.5		60	Vdc
Output Regulation						
Line $(V_{IN}=V_{IN, min} to V_{IN, max})$	All		_		1	% V _{O, set}
Load (I _O =I _{O, min} to I _{O, max})	All		_		0.4	% V _{O, set}
Temperature ($T_{ref}=T_{A, min}$ to $T_{A, max}$)	All		_		1	% V _{O, set}
Output Ripple and Noise on nominal output						
(V_{IN} = $V_{IN, nom}$ and I_0 = $I_{O, min}$ to $I_{O, max}$						
Cout = 340µF Polymer aluminum)						
RMS (5Hz to 20MHz bandwidth)	All		_		1	% V _{O, set}
Peak-to-Peak (5Hz to 20MHz bandwidth)	All		_		2	% V _{O, set}
External Capacitance						
$\text{ESR} \geq 1 \text{ m}\Omega$ (with minimum of $30 \mu F$ of ceramic capacitors)	All	Co, max	330	_	3000	μF
$\text{ESR} \geq 10 \text{ m}\Omega$ ((with minimum of $30 \mu F$ of ceramic capacitors)	All	C _{O, max}	330	_	3000	μF
Output Current (Vo=18.5V)	All	I _o	0		16.7A	Adc
(Vo=24V)	All	Io	0		16.7A	Adc
(Vo=48V)	All	Io	0		8.33A	Adc
(Vo=60V)	All	I _o	0		6.67A	Adc
Output Current Limit Inception (Hiccup Mode)	All	I _{O, lim}		110	_	% I _o
$(V_O=90\% \text{ of } V_{O, set})$						
Output Short-Circuit Current	All	I _{O, s/c}	_	2.0	_	Arms
(V ₀ ≤250mV) (Hiccup Mode)						
Efficiency, V _{IN} = 74V, T _A =25°C, I _O =I _{O, max} , V _O = V _{O,set}						
V _{O, set} = 52Vdc	All	η	95			%
Switching Frequency	All	f _{sw}	_	220	_	kHz

18Vdc-85Vdc input 18.5Vdc to 60Vdc output: 400W Max. Output

General Specifications

Parameter	Min	Тур	Max	Unit	
Calculated MTBF (I ₀ =I _{0, max} , T _A =25°C)		19,173,816		Hours	
Weight	_	112 (3.95)	_	g (oz.)	

Feature Specifications

Unless otherwise indicated, specifications apply overall operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for additional information.

Parameter	Device	Symbol	Min	Тур	Max	Unit
On/Off Signal interface						
(On/Off is open collector/drain logic input;						
Signal referenced to GND - See feature description section)						
Input High Voltage (Module ON)	All	ViH	2	_	3.3	V
Input High Current	All	Iн	_	_	100	μΑ
Input Low Voltage (Module OFF)	All	VIL	-0.2	_	0.8	V
Input Low Current	All	lı∟	_	_	500	μΑ
Turn-On Delay and Rise Times						
$(I_0=I_{0, max}, V_{IN}=V_{IN, nom}, T_A=25 {}^{\circ}C,)$						
Case 1: On/Off input is set to Logic Low (Module ON) and then input power is applied (delay from instant at which $V_{IN} = V_{IN}$, min until $Vo = 10\%$ of Vo, set)	All	Tdelay	_	90	_	msec
Case 2: Input power is applied for at least one second and then the On/Off input is set to logic Low (delay from instant at which Von/Off=0.3V until Vo=10% of Vo, set)	All	Tdelay	_	50	_	msec
Output voltage Rise slew rate	All	dv/dt _{rise}	_	0.333	0.4	V/msec
Output voltage overshoot - Startup				_	5	% V _{O, set}
$I_0 = I_{0, max}$; $V_{IN} = 18$ to 85Vdc, $T_A = 25$ °C						
Over Temperature Protection	All	T _{ref}	_	120	_	°C
(See Thermal Considerations section)						
Input Undervoltage Lockout						
Turn-on Threshold	All				18	V
Turn-off Threshold	All		15			V
PGOOD (Power Good)						
Signal Interface Open Drain, Vsupply ≤ 5VDC						
Overvoltage threshold for PGOOD	All			112.5		%VO, set
Undervoltage threshold for PGOOD	All			87.5		%VO, set

18Vdc-85Vdc input 18.5Vdc to 60Vdc output: 400W Max. Output

Characteristic Curves

The following figures provide typical characteristics for the JRCS011 at 24Vo and 25oC.

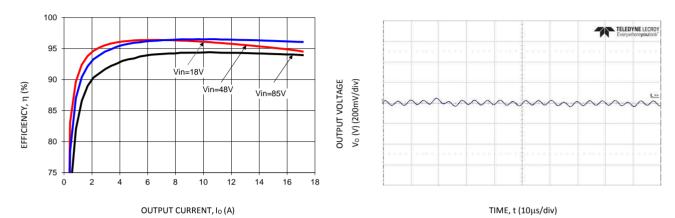


Figure 1. Converter Efficiency versus Output Current for V_{out} = Figure 2. Typical output ripple and noise for V_{out} = 24V. Input 24V. voltage = 48V, Cout = 330 μ F electrolytic + 15 x 2.2 μ F ceramic.

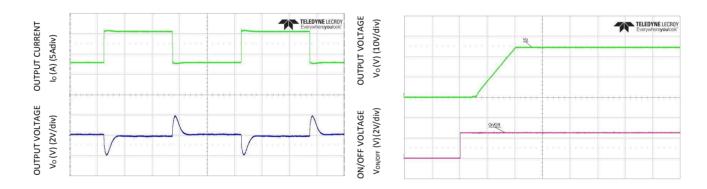
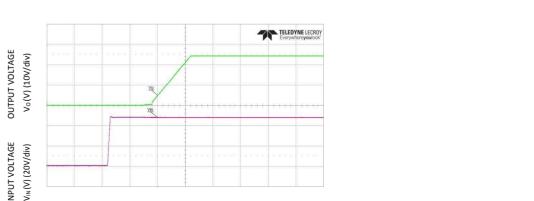



Figure 3. Transient Response to Dynamic Load Change from 50% to 100% at 48Vin, C_{OUT} = 330 μF electrolytic + 15 x 2.2 μF ceramic.

TIME, t (2ms/div)

TIME, t (50ms/div)

Figure 5. Typical Start-up Using Input Voltage ($V_{IN} = 48V$, $I_0 = I_{o,max}$).

TIME, t (50ms /div)
Figure 4. Typical Start-up Using On/Off Voltage (VIN=48V, Io = Io, max).

18Vdc-85Vdc input 18.5Vdc to 60Vdc output: 400W Max. Output

Characteristic Curves

The following figures provide typical characteristics for the JRCS011 at 48Vo and 25oC.

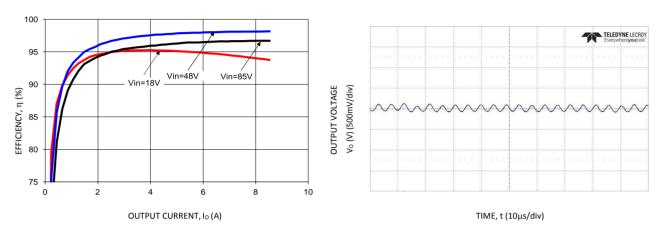


Figure 6. Converter Efficiency versus Output Current for V_{out} = Figure 7. Typical output ripple and noise for V_{out} = 48V. Input voltage = 74V, C_{OUT} = 330 μ F electrolytic + 15 x 2.2 μ F ceramic.

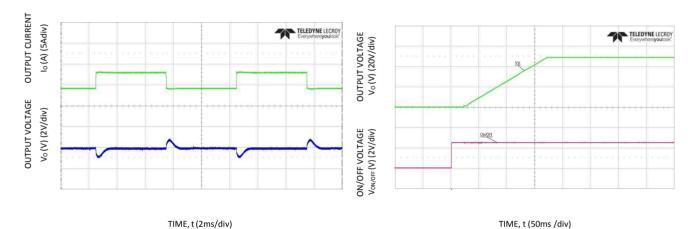
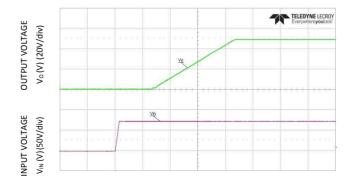



Figure 8. Transient Response to Dynamic Load Change from 50% to 100% at 74Vin, C_{OUT} = 330 μF electrolytic + 15 x 2.2 μF ceramic.

Figure 9. Typical Start-up Using On/Off Voltage (V_{IN} =74V, I_0 = $I_{0.max}$).

TIME, t (50ms/div)

Figure 10. Typical Start-up Using Input Voltage ($V_{IN} = 74V$, $I_0 = I_{o,max}$).

18Vdc-85Vdc input 18.5Vdc to 60Vdc output: 400W Max. Output

Characteristic Curves

The following figures provide typical characteristics for the JRCS011 at 60Vo and 25oC.

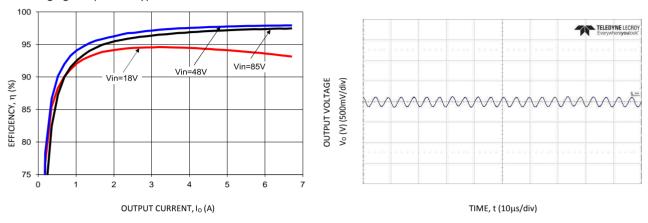


Figure 11. Converter Efficiency versus Output Current for V_{out} = 60V.

Figure 12. Typical output ripple and noise for V_{out} = 60V. Input voltage = 48V, C_{OUT} = 330 μ F electrolytic + 15 x 2.2 μ F ceramic.

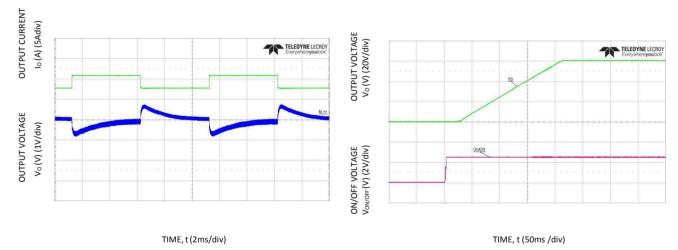


Figure 13. Transient Response to Dynamic Load Change from 50% to 100% at 48Vin, Cout= 330 μ F electrolytic + 15 x 2.2 μ F ceramic.

Figure 14. Typical Start-up Using On/Off Voltage (V_{IN} =48V, I_0 = $I_{0,max}$).

TIME, t (50ms/div)

Figure 15. Typical Start-up Using Input Voltage ($V_{IN} = 48V$, $I_0 = I_{0,max}$).

18Vdc-85Vdc input 18.5Vdc to 60Vdc output: 400W Max. Output

The following figures provide typical thermal derating for the JRCS011 at various input and output voltages.

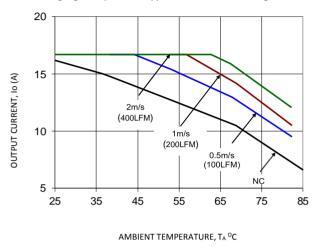


Figure 16. Derating Output Current versus Ambient Temperature and Airflow for Vin=48V, Vout=24V

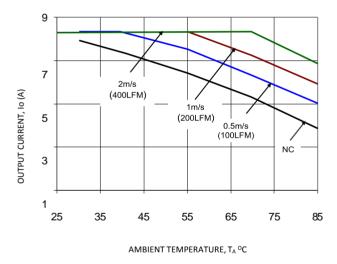


Figure 18. Derating Output Current versus Ambient Temperature and Airflow for Vin=24V, Vout=48V

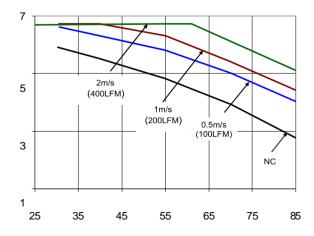


Figure 20. Derating Output Current versus Ambient Temperature and Airflow for Vin=24V, Vout=60V

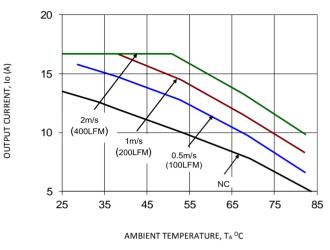


Figure 17. Derating Output Current versus Ambient Temperature and Airflowfor Vin=74V, Vout=24V

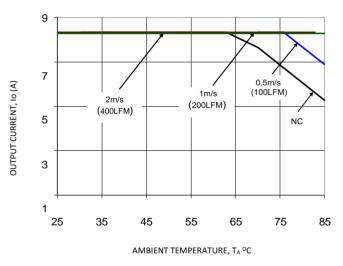


Figure 19. Derating Output Current versus Ambient Temperature and Airflow for Vin=74V, Vout=48V

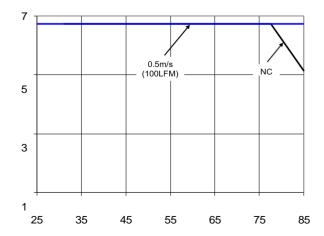


Figure 21. Derating Output Current versus Ambient Temperature and Airflow for Vin=48V, Vout=60V

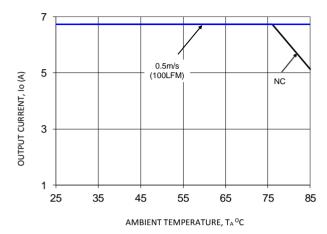
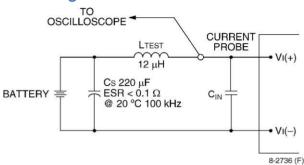
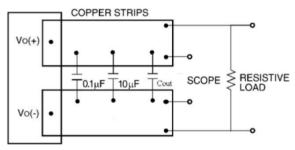



Figure 22. Derating Output Current versus Ambient Temperature and Airflow for Vin=74V, Vout=60V


18Vdc-85Vdc input 18.5Vdc to 60Vdc output: 400W Max. Output

Test Configurations

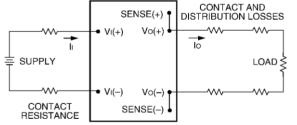

Note: Measure the input reflected-ripple current with a simulated source inductance (LTEST) of 12 μ H. Capacitor CS offsets possible battery impedance. Measure the current, as shown above.

Figure 23. Input Reflected Ripple Current Test Setup.

Note: Use a Cout (470 μF Low ESR aluminum or tantalum capacitor typical), a 0.1 μF ceramic capacitor and a 10 μF ceramic capacitor, and Scope measurement should be made using a BNC socket. Position the load between 51 mm and 76 mm (2 in. and 3 in.) from the module.

Figure 24. Output Ripple and Noise Test Setup.

8-3300 /F

Note: All measurements are taken at the module terminals. When socketing, place Kelvin connections at module terminals to avoid measurement errors due to socket contact resistance.

$$\eta \ = \ \left(\frac{[V_O(^+) - V_O(^-)]I_O}{[V_I(^+) - V_I(^-)]I_I} \right) \times 100 \ \%$$

Figure 25. Output Voltage and Efficiency Test Setup.

Design Considerations

Input Filtering

The JRCS016 module should be connected to a low acimpedance source. A highly inductive source can affect the stability of the module. An input capacitance must be placed directly adjacent to the input pin of the module, to minimize input ripple voltage and ensure module stability. To minimize input voltage ripple, ceramic capacitors or low-ESR electrolytic capacitors are recommended at the input of the module.

Output Filtering

These modules are designed for low output ripple voltage and will meet the maximum output ripple specification with 3 x $10\mu F$ ceramic capacitors in parallel with a $330\mu F$ capacitor at the output of the module. However, additional output filtering may be required by the system designer for a number of reasons. First, there may be a need to further reduce the output ripple and noise of the module. Second, the dynamic response characteristics may need to be customized to a particular load step change.

To reduce the output ripple and improve the dynamic response to a step load change, additional capacitance at the output can be used. Low ESR electrolytic and ceramic capacitors are recommended to improve the dynamic response of the module. For stable operation of the module, limit the capacitance to less than the maximum output capacitance as specified in the electrical specification table.

Safety Considerations

For safety agency approval the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standards, i.e., UL 60950-1 2nd, CSA C22.2 No. 60950-1-07, DIN EN 60950-1:2006 + A11 (VDE0805 Teil 1 + A11):2009-11; EN 60950-1:2006 + A11:2009-03.

For the converter output to be considered meeting the requirements of safety extra-low voltage (SELV), the input must meet SELV requirements. The power module has extra-low voltage (ELV) outputs when all inputs are ELV.

The input to these units is to be provided with a slow-blow fuse with a maximum rating of TBD A in the positive input lead.

18Vdc-85Vdc input 18.5Vdc to 60Vdc output: 400W Max. Output

Feature Descriptions

Remote On/Off

The JRCS016 power modules feature an On/Off pin for remote On/Off operation with positive logic. Positive Logic On/Off signal turns the module ON during a logic High on the On/Off pin and turns the module OFF during a logic Low.

Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is 17*24equipped with internal current-limiting circuitry and can endure current limiting continuously. At the point of current-limit inception, the unit enters hiccup mode. The unit operates normally once the output current is brought back into its specified range. The current limit threshold is variable ranging from 16.7 A at 18.5V to 24V out to 6.67A at 60Vout.

Input Undervoltage Lockout

At input voltages below the input undervoltage lockout limit, module operation is disabled. The module begins to operate at an input voltage above the undervoltage lockout turn-on threshold.

Overtemperature Protection

To provide over temperature protection in a fault condition, the unit shuts down if the thermal reference point T_{ref} , exceeds 120°C. The module automatically restarts after it cools down.

Analog Output Voltage Programming

The output voltage of the JRCS016 can be set over the 18.5V to 60V range by connecting a resistor RTrim between the TRIM and VO(-) pins as shown in Fig. 26. The output voltage will be set according to the following equation relating it to the value of RTrim:

$$Rtrim = \left[\frac{700 - (10 \times Vo)}{(Vo - 4)}\right] k\Omega$$

If no external trim resistor is connected, the output voltage will be set at 18.5. Table 1 provides Rtrim values required for some common output voltages.

Remote Sense

The JRCS016 modules have a Remote Sense feature to minimize the effects of distribution losses by regulating the voltage at the Remote Sense pins. The voltage between the VO(+) and +SEN pins should not exceed 1V.

Table 1

V _{0, set} (V)	Rtrim (KΩ)
18.5	35.51
20	31.25
24	23.0
28	17.5
32	13.571
36	10.625
48	5.0
52	3.75
54	3.2
60	1.786

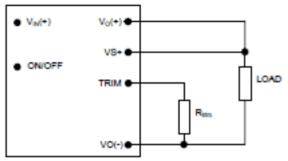


Figure 26. Circuit configuration for programming output voltage using an external resistor.

Power Good

The JRCS016 modules have a Power Good (PGOOD) signal that is implemented with an open-drain output to indicate that the output voltage is within the regulation limits of the power module. The PGOOD signal will be de-asserted to a low state if any condition such as overtemperature, overcurrent or loss of regulation occurs that would result in the output voltage going $\pm 10\%$ outside the setpoint value. The PGOOD terminal can be connected through a pullup resistor (suggested value $100\text{K}\Omega$) to a source of TBD VDC or lower.

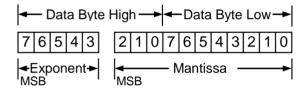
Page 12

JRCS016: Non-Isolated DC-DC Power Modules

18Vdc-85Vdc input 18.5Vdc to 60Vdc output: 400W Max. Output

Digital Feature Descriptions

PMBus Interface Capability


The JRCS016 power modules have a PMBus interface that supports both communication and control. The PMBus Power Management Protocol Specification can be obtained from www.pmbus.org. The modules support a subset of version 1.1 of the specification (see Table 6 for a list of the specific commands supported). Most module parameters can be programmed using PMBus and stored as defaults for later use.

All communication over the module PMBus interface must support the Packet Error Checking (PEC) scheme. The PMBus master must generate the correct PEC byte for all transactions and check the PEC byte returned by the module.

The module has non-volatile memory that is used to store configuration settings. Not all settings programmed into the device are automatically saved into this non-volatile memory, only those specifically identified as capable of being stored can be saved (see Table 6 for which command parameters can be saved to non-volatile storage).

PMBus Data Format

For commands that set thresholds, voltages or report such quantities, the module supports the "Linear" data format among the three data formats supported by PMBus. The Linear Data Format is a two byte value with an 11-bit, two's complement mantissa and a 5-bit, two's complement exponent. The format of the two data bytes is shown below:

The value is of the number is then given by

Value = Mantissa x 2 Exponent

PMBus Addressing

The power module can be addressed through the PMBus using a device address. The module has a fixed address 0x20, the address cannot be changed.

PMBus Commands

Table 6

Hex Code	Command	Brief Description									Non- Volatile Memory Storage	
03	CLEAR_FAULTS	•	lear any fault bits that may have been set, also releases the SMBALERT# signal the device has been asserting it.									
11	STORE_DEFAULT_ALL	•	Copies all current register settings in the module into non-volatile memory EEPROM) on the module. Takes about 50ms for the command to execute.									
12	RESTORE_DEFAULT_ALL	Restores all curre non-volatile mem	_		_	in the r	nodule	from v	values	in the n	nodule	
		The module has N be changed	10DE s	set to L	inear a	ınd Exp	onent	set to	-8. The	se valu	es cannot	
20	VOLIT MODE	Bit Position	7	6	5	4	3	2	1	0		
20	VOUT_MODE	Access	r	r	r	r	r	r	r	r		
		Function Mode Exponent										
		Default Value	0	0	0	1	1	0	0	0		

		Sets the value of	input v	oltage	at wh	ich the	e mo	dule	turns	on		
		Format			near, tv							
		Bit Position	7	6	5	4		3	2	1	0	
		Access	r	r	r	r	_	r		r	r	
		Function			Expone			•		/antiss		
35	VIN_ON	Default Value	1	1	1	0	1	1	0	0	0	YES
			7	6	5	4	_	3	2	1	0	
		Bit Position	-				_					
		Access	r	r/w	r/w	r/w		/w	r/w	r/w	r/w	
		Function	_		T 0		ntiss				_	
		Default Value	1	0	0	0		1	0	0	0	
		Sets the value of	input v								1	
		Format	<u> </u>		near, tv						_	
		Bit Position	7	6	5	4	+	3	2	1	0	
		Access	r	r	r	r		r	r	r	r	
36	VIN_OFF	Function			xpone					1antiss		YES
		Default Value	1	1	1	0	_	1	0	0	0	. = 0
		Bit Position	7	6	5	4	_	3	2	1	0	
		Access	r	r/w	r/w	r/w	_	/w	r/w	r/w	r/w	
		Function					ntiss					
		Default Value	0	1	1	1		1	0	0	0	
		Sets the voltage	level fo	r an in	put ov	ervolta	ige f	fault.				
		Format			near, tv					ary		
		Bit Position	7	6	5	4		3	2	1	0	
		Access	r	r	r	r		r	r	r	r	
	\/\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Function			xpone	nt			N	1antiss	a	VEC
55	VIN_OV_FAULT_LIMIT	Default Value	1	1	1	0		1	0	1	0	YES
		Bit Position	7	6	5	4		3	2	1	0	
		Access	r	r/w	r/w	r/w	_	/w	r/w	r/w	r/w	
		Function			' '		ntiss			,	,	
		Default Value	1	1	0	0		1	0	0	0	
		Returns two byte	s of int	format	tion wi	th a cu	mm	25/10	of the	modulo	'c	
		fault/warning co			LIOII WI	ui a su		iai y C	n the	module	: 5	
		-	I	13							1	
		Format				Jnsign						
		Bit Position	7	6	5	4		3	2	1	0	
		Access	r	r	r	r		r	r	r	r	
79	STATUS_WORD	Flag	Х	Х	Х	Х		Х	Х	Х	Х	
.	31711 03_11 0110	Default Value	0	0	0	0		0	0	0	0	
		Bit Position	7	6	5	4		3	2	1	0	
		Access	r	r	r	r		r	r	r	r	
		Flag	х	х	Х	Х		x	TEMP	CML	OTHE	
			_ ^	_ ^	^	_ ^		^	ILIVIP	CIVIL	R	
		Default Value	0	0	0	0		0	0	0	0	
		Returns one byte				the s	tatu	s of	the m	odule's		
		communication r	elated	faults								
		Format			ι	Jnsign	ed E	Binar	у			
		Bit Position	7		6	5	4	3	2	1	0	
7E	STATUS_CML	Access	r		r	r	r	r	r	r	r	
			T.	<u> </u>		550				Other		
		Flag	Inva		nvalid		Χ	Х	х	Comm		
		C	Comn	nand	Data	Fail				Fault		
		Default Value	0	+	0	0	0	0	0	0	0	
			L		-	-	-	1				

		Returns the value	of the	input	voltage	applie	ed to th	ne mod	ule				
		Format			near, tw								
		Bit Position	7	6	5	4		2	1	0			
		Access	r	r	r	r	r	r	r	r			
		Function	'		xponer		<u> </u>		' 1antiss				
88	READ_VIN			ı									
		Default Value	1	1	1	0	1	0	0	0			
		Bit Position	7	6	5	4	3	2	1	0			
		Access	r	r	r	r	r	r	r	r			
		Function				Man	tissa						
		Default Value	0	0	0	0	0	0	0	0			
		Returns the value	of the	outpu	t volta	ge of th	ne mod	lule. Ex	ponen	t is fixe	ed at -		
		8.											
		Format		Lin	ear, tw	o's cor	mplem	ent bin	ary				
		Bit Position	7	6	5	4	3	2	1	0			
		Access	r	r	r	r	r	r	r	r			
8B	READ_VOUT	Function				Man	tissa		•				
	_	Default Value	0	0	0	0	0	0	0	0			
		Bit Position	7	6	5	4	3	2	1	0			
		Access	r	r	r	r	r	r	r	r			
		Function		<u> </u>	<u> </u>	Man	tissa	<u> </u>	<u> </u>	I			
		Default Value	0	0	0	0	0	0	0	0			
										ŭ			
		Returns the value	or the		t curre lear, tw				201		İ		
		Bit Position	7	6	5 5	4	3	2	1 1	0			
		Access	r	r	r	r	r	r	r	r			
8C	READ_IOUT	Function			xponer		1		1antiss				
	-	Default Value	1	1	1	0	0	0	0	0			
		Bit Position Access	7 r	6 r	5 r	4 r	3 r	2 r	1 r	0 r			
		Function	-		<u> </u>		tissa						
		Default Value	0	0	0	0	0	0	0	0			
		Returns the value	of the	tempe	erature	sensoi	r 1 of th	ne mod	lule				
		Format			ear, tw								
		Bit Position	7	6	5	4	3	2	1	0			
		Access	r	r	r	r	r	r	r	r			
8D	READ_TEMP_1	Function Default Value	1	1	xponer 1	nt 1	0	0	1antiss 0	a 0			
		Bit Position	7	6	5	4	3	2	1	0			
		Access	r	r	r	r	r	r	r	r			
		Function					tissa						
		Default Value	0	0	0	0	0	0	0	0			
		Returns the value	of the										
		Format			ear, tw								
		Bit Position Access	7 r	6 r	5 r	4 r	3 r	2 r	1 r	0 r			
	DE 4 DE 1 DE 1 DE 1	Function	<u> </u>	l	xponer		_ '		l r ∕lantiss				
8E	READ_TEMP_2	Default Value	1	1	1	1	0	0	0	0			
		Bit Position	7	6	5	4	3	2	1	0			
		Access	r	r	r	r	r	r	r	r			
		Function	_				tissa						
		Default Value	0	0	0	0	0	0	0	0			

98	PMBUS_REVISION	Returns one byte only) Format Bit Position Access Default Value	7 r 0	6 r	5 r 0	nsigne 4 r 1	d Bina 3 r 0	ry 2 r 0	1 r 0	0 r 1		
D1	VOUT_CAL_GAIN	Applies a gain co out gain errors in Format Bit Position Access Function		le mea		ents of ro's cor 4 r/w	the ou	tput vo	ltage	o calibr 0 r/w	rate	YES
		Default Value Bit Position Access Function Default Value	7 r/w	6 r/w	5 r/w able bas	4 r/w Man	3 r/w tissa	2 r/w	1 r/w	0 r/w		
D2	VOUT_CAL_OFFSET	Applies an offset errors in module 8. Format Bit Position Access Function Default Value Bit Position Access Function Default Value		Lin 6 r/w Varia 6 r/w		o's cor 4 r/w Man sed on 4 r/w Man	mplemed 3 r/w tissa factory 3 r/w tissa	ent bin 2 r/w / calibr 2 r/w	ary 1 r/w ation 1 r/w			YES
D3	VIN_CAL_GAIN	Returns the value input voltage. Format Bit Position Access Function Default Value Bit Position Access Function Default Value	7 r/w	Egain c Lin 6 r/w Varia 6 r/w		ro's cor 4 r/w Man sed on 4 r/w Man	mplements 3 r/w tissa factory 3 r/w tissa	to corrent bin 2 r/w / calibr 2 r/w	ary 1 r/w ation 1 r/w	0 r/w	ured	YES
D4	VIN_CAL_OFFSET	Returns the value input voltage. Format Bit Position Access Function Default Value Bit Position Access Function Default Value	7 r l l l r/w	Lin 6 r E 1 6 r/w	ear, tw 5 r exponer 1 5 r/w	ro's cor 4 r nt 0 4 r/w Man	nplemondary r	ent bin 2 r/w N 2 r/w	ary 1 r/w fantiss V 1 r/w	0 r/w	asured	YES

		Returns the value	of the	gain c	orrecti	on tern	n used	to corr	ect the	e meası	ured	
		output current										
		Format		Lin	ear, tw	o's cor	mplem	ent bin	ary			
		Bit Position	7	6	5	4	3	2	1	0		
		Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w		
D6	IOUT_CAL_GAIN	Function				Man	tissa					YES
		Default Value		Varia	ble bas	ed on	factory	/ calibr	ation			
		Bit Position	7	6	5	4	3	2	1	0		
		Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w		
		Function				Man	tissa					
		Default Value		Varia	ble bas	ed on	factory	/ calibr	ation			
		correc	tion te	rm use	d to co	rrect t	he mea	sured				
		output current										
		Format		Linear, two's complement binary								
		Bit Position	7	6	5	4	3	2	1	0		
		Access	r	r	r	r	r	r/w	r/w	r/w		
D7	IOUT_CAL_OFFSET	Function		E	xponer	nt		٨	1antiss	a		YES
		Default Value	1	1	1	0	0		V			
		Bit Position	7	6	5	4	3	2	1	0		
		Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w		
		Function				Man	tissa					
		Default Value		V: Var	able ba	ased or	า facto	ry calib	ration			
DB	FW_REV	Returns the firmware version in format of "0xMj.Mn.Bh.Bl"										

18Vdc-85Vdc input 18.5Vdc to 60Vdc output: 400W Max. Output

Thermal Considerations

Power modules operate in a variety of thermal environments; however, sufficient cooling should always be provided to help ensure reliable operation.

Considerations include ambient temperature, airflow, module power dissipation, and the need for increased reliability. A reduction in the operating temperature of the module will result in an increase in reliability. The thermal data presented here is based on physical measurements taken in a wind tunnel. The test set-up is shown in Figure 27. The preferred airflow direction for the module is in Figure 28.

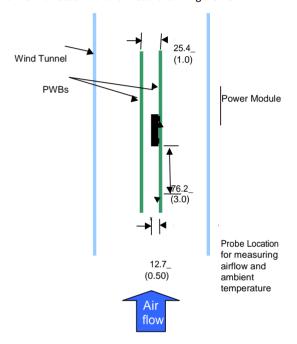


Figure 27. Thermal Test Setup.

The thermal reference points, T_{ref1} and T_{ref2} used in the specifications are also shown in Figure 28. For reliable operation the temperatures at these points should not exceed 98°C. The output power of the module should not exceed the rated power of the module (Vo,set x Io,max).

Please refer to the Application Note "Thermal Characterization Process for Open-Frame Board-Mounted Power Modules" for a detailed discussion of thermal aspects including maximum device temperatures.

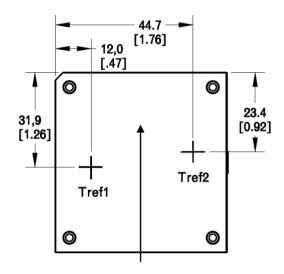


Figure 28. Location of hot-spots of the module (Tref1 and Tref2).

18Vdc-85Vdc input 18.5Vdc to 60Vdc output: 400W Max. Output

Layout Considerations

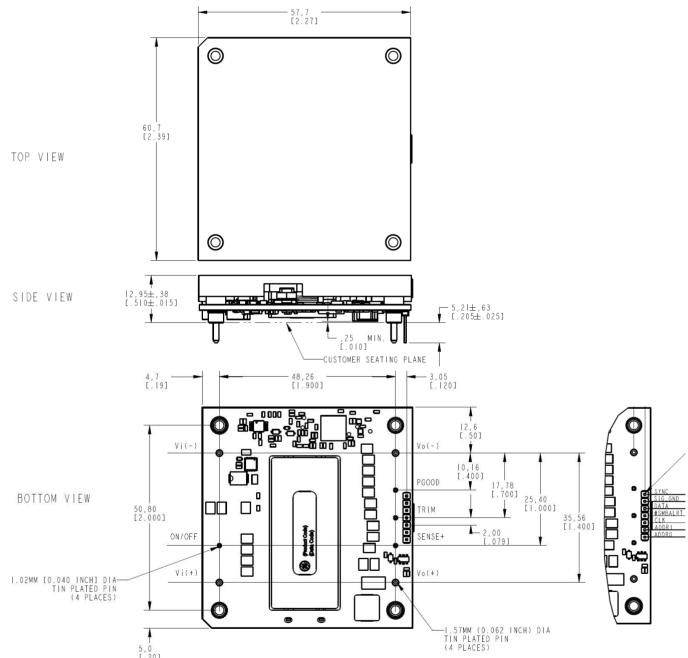
The JRCS016 power module series are constructed using a single PWB with integral base plate; as such, component clearance between the bottom of the power module and the mounting (Host) board is limited. Avoid placing copper areas on the outer layer directly underneath the power module.

Post Solder Cleaning and Drying Considerations

Post solder cleaning is usually the final circuit-board assembly process prior to electrical board testing. The result of inadequate cleaning and drying can affect both the reliability of a power module and the testability of the finished circuit-board assembly. For guidance on appropriate soldering, cleaning and drying procedures, refer to GE Board Mounted Power Modules: Soldering and Cleaning Application Note.

Through-Hole Lead-Free Soldering Information

The RoHS-compliant through-hole products use the SAC (Sn/Ag/Cu) Pb-free solder and RoHS-compliant components. They are designed to be processed through single or dual wave soldering machines. The pins have an RoHS-compliant finish that is compatible with both Pb and Pb-free wave soldering processes. A maximum preheat rate of 3°C/s is suggested. The wave preheat process should be such that the temperature of the power module board is kept below 210°C. For Pb solder, the recommended pot temperature is 260°C, while the Pb-free solder pot is 270°C max. The JRCS016 cannot be processed with pastethrough-hole Pb or Pb-free reflow process. If additional information is needed, please consult with your GE representative for more details.


18Vdc-85Vdc input 18.5Vdc to 60Vdc output: 400W Max. Output

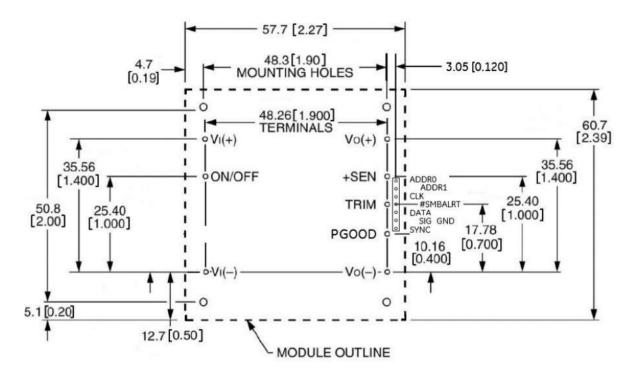
Mechanical Outline

Dimensions are in millimeters and [inches].

Tolerances: x.x mm \pm 0.5 mm [x.xx in. \pm 0.02 in.] (unless otherwise indicated)

x.xx mm \pm 0.25 mm [x.xxx in \pm 0.010 in.]

PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION
1	VI(+)	6	TRIM	11	DATA
2	ON/OFF	7	+SEN	12	#SMBALRT
3	VI(-)	8	VO(+)	13	CLK
4	Vo(-)	9	SYNC	14	ADDR1
5	PGOOD	10	SIG_GND	15	ADDR0


Note: Pins 9, 10, 11, 12, 13, 14 and 15 can be NC when modules do not have the PMBus function.

18Vdc-85Vdc input 18.5Vdc to 60Vdc output: 400W Max. Output

Recommended Pad Layout for Through Hole Module

Dimensions are in millimeters and [inches].

18Vdc-85Vdc input 18.5Vdc to 60Vdc output: 400W Max. Output

Product Matrix

Device Code	Input Voltage Range	Output Voltage	Output Current	On/Off Logic	Comcode
JRCS016A0S4-HZ	18 - 85Vdc	18.5 to 60V	16.7A to 6.7A	Positive	1600130338A
JRCS016A0S64-HZ	18 - 85Vdc	18.5 to 60V	16.7A to 6.7A	Positive	150038175

Device Description

	Characteristic	Character and Position		Definition	
Ratings	Form Factor	J		J = Half Brick	
	Family Designator				
		RC			
	Input Voltage*	S		S = Special Range 18V-85V	
	Output Current*	016A0		016A0 = 016.0 Amps Maximum Output Current	
	Output Voltage*	U		U = 48.0V nominal	
Options	Pin Length	8 6 5		Omit = Default Pin Length shown in Mechanical Outline Figures $8 = Pin Length$: $2.79 \text{ mm} \pm 0.25 \text{mm}$, $(0.110 \text{ in.} \pm 0.010 \text{ in.})$ $6 = Pin Length$: $3.68 \text{ mm} \pm 0.25 \text{mm}$, $(0.145 \text{ in.} \pm 0.010 \text{ in.})$ $5 = Pin Length$: $6.35 \text{ mm} \pm 0.25 \text{mm}$, $(0.250 \text{ in.} \pm 0.010 \text{ in.})$	
	Action following Protective Shutdown*	4		Omit - Latching Mode 4 = Auto-restart following shutdown (Overcurrent/Overvoltage)	
	On/Off Logic (i)	1		Omit = Positive Logic, Remote on/off pin referenced to Vin 1 = Negative Logic, Remote on/off pin referenced to Vin	
	Customer Specific	XY		XY = Customer Specific Modified Code, Omit for Standard Code	
	Optional Features		P H	Omit = Standard open Frame Module P = Forced Droop Output for use in parallel applications H = Heat plate, for use with heat sinks or cold-walls (Must be ordered)	
	RoHS		Z	Z = RoHS 6/6 Compliant, Lead free	

⁻Z refers to RoHS compliant parts

Contact Us

For more information, call us at

USA/Canada:

+1 888 546 3243, or +1 972 244 9288

Asia-Pacific:

+86.021.54279977*808

Europe, Middle-East and Africa:

+49.89.878067-280

www.gecriticalpower.com

ABB reserves the right to make changes to the product(s) or information contained herein without notice, and no liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

